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The confined atom Thomas-Fermi equation with non-spherical boundary conditions is 
considered. A 2-D finite element code for solving the Thomas-Fermi equation with general 
boundary conditions is demonstrated. Results for both Dirichlet and Neumann boundary con- 
ditions for ellipsoids of revolution are presented. 0 1987 Academic Press, IW. 

I. INTRODUCTION 

A central feature in the Thomas-Fermi (TF) theory [l-5] for the equation of 
state (EOS) of elements at high densities is the “ion sphere” picture. In this theory, 
the properties of the bulk material are approximated by those of an isolated 
spherically symmetric “atom” of radius equal to the Wigner-Seitz radius, 
a = (3v/4n)“3, where v is the volume per atom. Although founded by the notion of 
thw Wigner-Seitz cell of a tightly packed periodic lattice, the ion sphere picture is 
introduced ad hoc. 

We have several motivations for considering the confined atom TF problem with 
non-spherical boundary conditions. Many types of corrections to the basic TF 
approximation have been considered, including exchange, gradient, and nuclear 
motion effects. However, no systematic assessment is available of the relative impor- 
tance of those corrections, in comparison with perturbations on the ad hoc 
spherical boundary conditions. Material subject to strong shocks may exhibit local 
deformations which may be better described by, say, ellipsoidal boundary con- 
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&ions than by the customary spherical ones. For the spherical atom the Biric 
and Neumann boundary conditions coincide. However, in the non-spherical case, 
these two sets of boundary conditions represent completely different assu ions 
about the nature of the bulk material. Dirichlet boundary conditions corres d to 
a conducting medium, and the isolation of the non-spherical neutral atom is 
obtained with the “aid” of the induced surface charge. Fsr Neumann bo 
conditions the isolation is obtained with the aid of a surface dipole layer. 
both physical and mathematical interest to analyze, within the TF approxi~at~~~! 
these different views of the bulk material and see how they merge for the spherical 
case. 

Loughlin [S], solved the temperature-dependent equation for a s 
with a non-central nucleus, employing Neumann boundary conditions. 
cell model for nuclear motion effects to study the temperature de 
interatomic forces of normal-density matter and its effect on the equation of state. 

intention, however, is to study the TF cell model with nonspherical boun- 
Very recent analysis [7] revealed that the electrostatic Poisson eq~a~~o~ 
irichlet boundary conditions is intimately connected to the integral equation 

theory of charged particles. Both the ion-sphere boundary condition and 
of the bulk (electrons and ions) material as an infinite conductor, were s 
contained within the theory of classical liquids in the hypernetted ch 
approximation. 

The high density solution of the HNC equations for charge-clusters plasmas, as 
met in the Onsager charge-smearing optimization, defines nsager-T~-con~~~~ 
‘“molecules” [S]. These are natural generalizations of the TF-confmed “atoms.” The 
difference between the free energies of one such diatomic-molecule, and two 
separate atoms, as a function of the interatomic distance, r, in the rno~ec~~e, is 
related to the nuclear pair correlation function, g(r). T ese new developments 
provide further motivation to consider the TF-cell model th non-spherical boun- 
daries. 

Notwithstanding all of these motivations, the purpose of the present com- 
munrcation is mainly to outline the main points introduced by the deviations from 
spherical symmetry and develop a suitable numerical scheme. 

The computational procedure used throughout this work was based on a finite 
element package, extended and modified to treat the nonhnearities of the TF ty 
The TF problem discussed in this paper enjoyed cylindrical symmetry and was 
solved over various ellipsoids of revolution. The authors’ purpose, however; is to 
design a numerical tool that can be used for cases which do not necessarily possess 
cylindrical symmetry. Thus, a finite element approach was chosen rather than other 

ds; e.g., the Fourier-Bessel expansion which is often used in the related 
Shafranov equation of magneto-hydrodynamics [9 ]. 

Section II the problem is formulated for general boundaries and boun 
umerical procedure for axisymmetric shapes is given in 
Dirichlet and Neumann boundary conditions for e 

revolution are presented in Section IV. 

581.‘70,‘2-2 
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II. THOMAS-FERMI EQUATION AND THE VIRIAL THEOREM 

The TF theory supplements the atom confinement condition by the statistical 
assumption, which introduces free-electron-gas statistics locally within the atom: Let 
p = F(p) be the ideal free-electron-gas relation between the chemical potential p, 
and the electron density p. If q(r) is the electrostatic potential of a point r inside the 
confined atom with an ion of charge Ze at the origin, and p(r) is the corresponding 
local electron density, then the TF relation is 

h9 = JICL + w(r)). (1) 

Measuring distances in units of y = (9~~/1282)“~ a,, where a, is the Bohr radius, 
and energies in units of Ze*/y, we let 

a = Z/h 

r= irl (2) 

4W 
--=p+eecp(r) 

r 

and obtain from (1) the zero temperature relation 

312 

p(r)=a t . 
0 

Bearing in mind the scaling properties of the model we take hereafter Z= 1, i.e., 
a = 1/47c. 

Using Poisson’s equation of electrostatics, one gets the standard zero tem- 
perature TF equation 

V”+(r) = $3/2(r)/r1/2 (4) 

with the central “boundary” condition 

l&O) = 1. (5) 

For the spherically symmetric TF problem of an atom confined within a sphere of 
radius R, both Neumann 

(6) 

and Dirichlet 

boundary conditions coincide (fi denotes the outward normal unit vector). 



THOMAS-FERMI EQUATION 287 

The charge neutrality condition 

a 
N ) 

p&J 3f2 d3r = 1 
” Y 

needs to be imposed for a Dirichlet problem, while it is automatically satisfied In 
the Neumann case. 

Qnly the combination p + eq(r) enters the Neumann problem and in order to 
determine y, i.e., the thermodynamics, an additional constraint needs to be impose 
(see below ). 

Given the solution of (4), (5), and (6) or (7), we may obtain the kinetic energy 
via 

The potential energy is measured relative to the infinite self energy of the ion, U,;, 
and is given by 

UP=&?’ E*Ed3r-Ui,, 
” 

where E(r) = -Vcp(r) is the electric field. On the other band the potential energy UP 

consists of the following electrostatic interactions: ion-electron uie, ion-surface 
charge Ui,, electronelectron U,, , electronsurface U,, , and surface-surface &i,, , 

where 

is the usual expression for the potential energy in the spherical case. For t 
Neumann problem p is still to be determined (see Eq. (20)) while for the ~~r~~b~et 
problem we obtain 

(12) 

where I, (spherical) = 0, and s is the surface of u. 
From the TF expression (3) and straightforward electrostatics using the i 

given by More [lo], we obtain the (“virial”) identity 

2U, + U, =; J5 (y)5’2 r. ds + I,, (13) 
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where I,, the electric field pressure is given by 

II= i&j IE12r.ds. 
s 

The signs (+ ) and (-) correspond to the Neumann and Dirichlet boundary 
conditions, respectively. For a sphere, I, = 0 and Eq. (13) takes the familiar 
virial-theorem form 

2uk+u,=3a~5’2.3v_p.3v, (15) 

where p is the pressure and v is the atomic volume. In view of the general scale 
analysis of Feynman, Metropolis and Teller Cl], Eq. (13) should be interpreted as 
the virial theorem 

Indeed, considering the free energy functional 

a[+] = U,[$] + U,[$, - ,uct s, (F)3’2 d3r 

and taking the volume derivative at constant $ and shape, we obtain for the 
Dirichlet problem 

( 1 -g 3v=2UK+ UP. (18) 

Note that the pressure p is defined by Eqs. (15) and (16) which are otherwise 
obtained by plain electrostatics. Although this definition is not unique, it is the one 
usually adopted [lo]. What singles it out as an appropriate definition of a pressure 
for the cell model of matter, is, that it obeys thermodynamic consistency. We thus 
impose the thermodynamic consistency p = -X?jav for the Neumann condition as 
well, and find that it holds, provided that 

!” p(r)eq(r)r.ds= -&j lE12r.ds 
s s 

which in our units (a = l/477) reads 

(20) 
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III. THE FINITE ELEMENT SCHEME 

The computations were performed using a 2-D finite element package 
[11], that was extended and modified to treat the non-linear term of t 
(Eq. (4)). The MANFEP code has already proved useful in solving various physical 
problems [12-141. The new version processed the TF functional (Eq. 26) and 
established a respective system of non-linear equations, for which an initial guess 
had to be found. The appropriate 1-D problem was then solved ~A~~e~di~ 1) for 
the same radius using overrelaxation factor extremely close to 2 to ensure 
vergence. This 1-D solution provided a first approximation for the 3-D eI 

ue to axial symmetry and using spherical coordinates, Eq. (4) takes the form 

Furthermore, by defining 

x = Y sin 0 

y-rcosd 

one obtains 

Consider an ellipsoid of revolution 

(22) 

whose volume $na2b equals to that of a sphere with radius R, i.e., a = 
The computations are then restricted to the first quarter of an ellipse in the x - y 
plane. As mentioned before we distinguish between two cases. 

a. A Dirichlet Problem 

The boundary conditions are 
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where C is the ellipse’s boundary. The constant ,u is determined by the electro- 
neutrality condition (Eq. (8)). Equations (23), (25a), (25b) are solved by minimiz- 
ing the functional 

F(‘h) = jjD, [; ($2 + $;, +s] dx dy 

over the set {$I$ E C’(O’), $ satisfies Eq. (25a)}, where 

Equation (25b) is then automatically satisfied being a natural boundary condition 
of the functional. 

b. A Neumann Problem 

The boundary conditions are 

a* ar 
ran-%$=% r6 C, 

and if one restricts computations to the first quarter, one should assume Eq. (25b) 
as well. The functional to be minimized for a Neumann problem is 

(30) 

While when solving a Neumann problem, MANFEP is called just once, a 
Dirichlet problem must be solved iteratively as follows: Given an ellipsoid of 
revolution D and any constant potential boundary condition p, let 

h(p) = a jD (>)“’ d3r - 1. (31) 

The electro-neutrality condition is h(p) = 0 and is satisfied by some p*. Since for the 
spherical case the Neumann and Dirichlet problems are identical, one may first 
solve a spherical Neumann Problem (Appendix) and use its ,u as a first 
approximation to p*. A Regula Falsi scheme is then applied to iteratively calculate 
P*. 

IV. RESULTS 

We solved Eq. (23) for both Dirichlet and Neumann cases and for R = 1.19, 2.8, 
5.85. The values of p = $(R)/R computed for the 1 - D Neumann problem (Appen- 
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TABLE I 

A Dirichlet Problem 

R il 

1.19 1.0 
1.19 1.2 
1.19 0.8 

2.80 1.0 

2.80 1.2 
2.80 0.8 
5.85 1.0 
5.85 1.2 
5.85 0.8 

P CJp 
- 

1.220 1.365 -1.632 0.0002 
1.248 1.361 -1.599 0.0599 

1.250 1.367 -1.601 0.0631 
0.172 0.738 -1.380 0 

0.179 0.742 - 1.377 0.0129 
0.181 0.732 -1.361 0.0120 
0.0263 0.657 - 1.322 0.0001 

0.0282 0.657 -1.319 0.0019 
0.0288 0.649 -1.307 0.0019 

P 

0.0048 0.0523 
0.0321 0.0526 
0.0375 0.0526 
0.0015 0.00039 
0.0112 O.OOO38 
0.0108 0.00040 
0.0023 3.6 x 10-e 

0.0045 3.5 x 1o-6 

O.OQ45 3.7 x 10 6 

dix) were in 5-digit agreement with previous results [2] and served as first 
approximations for ,LL* of the nonspherical Dirichlet problems. They have also been 
used to solve 3-D spherical Dirichlet problems via MANFEP, enabling us to deter- 
mine an accuracy rate of the results -0.5% for $. 

For each of the radii the TF equation was completely solved for y = 0.8, 1, 1.2. 
Tables I and II consist of the computed values of p, U,, Ur), Pi, 1*, and p for the 

irichlet and Neumann cases, respectively. The electron density distribution along 
the x, y axes is given in Fig. 1 and the normal and tangential electric field on the 
boundary for the Dirichlet and the Neumann problems respectively are given in 
Fig 2. A typical finite element mesh (14 elements, 4th order 
approximations, 133 nodes) used in the computations is given in Fig. 3. 

The accuracy of the numerical procedure can be esti ated by comparing the 
“Dirichlet” and the “Neumann” results (Tables I, II) for e spherical case (v = I). 
‘We observe that the pressure p is minimal for the sphere and that 20-25% asym- 
metry yields about 3% increase in the pressure. 

TABLE II 

A Neumann Problem 

R ? 

I.19 1.0 1.210 1.350 -1.618 0.0004 0.0092 
1.19 1.2 1.269 1.365 -1.600 0.0644 0.0101 
1.19 0.8 1.313 1.388 -1.605 0.0895 0.0097 
2.80 1.0 0.169 0.736 -1.377 0.0001 0.0032 
2.80 1.2 0.190 0.748 -1.383 0.0106 0.0030 
2.80 0.8 0.196 0.731 -1.359 0.0116 0.0027 
5.85 1.0 0.0255 0.651 -1.321 0.0002 0.0032 
5.85 1.2 0.0486 0.659 -1.313 0.5074 0.0013 
5.85 0.8 0.0348 0.650 -1.306 0.0022 0.0033 

P 
- 

0.051 i 
0.053I 
0.0549 
0.00038 
0.00042 
0.00042 

3.2x 10m6 

7.0x 10-h 

4.7x IO-” 



o - ri = I (sphere) 

. -7) =I.2 

L 
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FIG. 1. Electron density along the axes for R= 1.19 and different asymmetries. N and D denote the 
Neumann and Dirichlet results, respectively. 

FIG. 2. Normal (E,) and tangential (Et) electric fields on the boundary for R= 1.19 as functions of 
the azimutal angle 0 (in radians). Nl and N2 denote the tangential field for the Neumann case with 
q = 0.8 and q = 1.2, respectively. Dl and D2 denote the normal field for the Dirichlet case with q = 0.8 
and v = 1.2, respectively. 
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FIG. 3. A typical finite element mesh used in the computations 

e expect that the achieved accuracy in $J will enable us to use t 
2-D problems with general boundary conditions and shapes not necessarily with 
cylindrical symmetry. This is an advantage compared to a solution based on series 
expansions, where each case needs to be studied separately for its accuracy. 

APPENDIX 

The spherical TF Neumann problem consists of solving t 

V$ = $3/y/=, O<r<R 

with boundary conditions 

Rg’ -$(R)=O. 
R 

, R] is uniformly divided by grid points 0 = rO < rl c c r, = R 
with h=r,+l- ri. At each internal point ri, Eq. (Al ) is replaced by its central finiite 
differences equivalent--leading to 

The boundary condition (A3) is replaced by 

and Eqs. (A4)-(A51 are iterated using overrelaxation technique, until the d~~~~~~~e 
between two consecutive iterations is less than a given tolerance. 
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